Appendix E West Kitsap County Restoration Projects and Scoring Results ## **Restoration Projects and Scoring Results** The table below provides the scoring results from the stressor-based GIS model for 46 potential restoration projects in West Kitsap County. While GIS model results are not intended to provide project specific information, this data is intended to provide information on assessing the likelihood of success of various management strategies and on the level and type of disturbance at the site scale. Results are discussed further in the two examples below the table. | Project
ID | t Location | Description | | Drift
Cell ID | Dominant
Processes | CF Site
Score | DP Site
Score | Drift Cel
Score | l CF Site | | e Drift Cell
Rank | Management Action | Comment | |---------------|--------------------------------|---|-----|------------------|---|------------------|------------------|--------------------|-----------|---|----------------------|----------------------------|--| | 2 | Foulweather | Assess geomorphic history of foulweather nature conservancy marsh and improve functions. | 792 | DC-3 | Wave Deposition | n 0.000 | 0.000 | 1.000 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 5 | Shipbuilders Creek | Remove the impacts to habitat forming processes at access area south of the mouth of Shipbuilders Creek. | 807 | DC-7 | Wave Deposition, Fluvial Deposition, Sediment Transport, Wave | 0.003 | 0.000 | 1.000 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 6 | Point Julia Barge | Remove abandoned barge just north of Point
Julia | 807 | DC-7 | Wave Deposition, Fluvial Deposition, Sediment Transport, Wave Frosion | | 0.000 | 1.000 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 8 | Hood Canal Floating
Bridge | Evaluate effects of Hood Canal Floating Bridge
on wave energy/sediment transport north of
the bridge, and redesign bridge or its operations
as needed | | DC-14 | Sediment
Transport, Wave
Erosion | 0.078 | 0.184 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 9 | Little Boston Creek | As needed. Restore tidal processes and fish access in Little Boston Creek | 810 | DC-8 | Fluvial
Deposition,
Sediment
Transport, Wave
Erosion | 0.096 | 0.093 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 10 | Point Julia Pilings | Remove old pilings about 0.7 miles south of Point Julia. | 810 | DC-8 | Fluvial Deposition, Sediment Transport, Wave Erosion | 0.096 | 0.093 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 11 | Martha John Creek | Protect the inlet of Martha John Creek and remove overwater structures and grounding docks at the mouth of the stream. | 817 | DC-9 | Tidal Erosion, Fluvial Deposition | 0.095 | 0.094 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 12 | Gamble Creek
Culvert | Evaluate potential impacts of culvert at the mouth of Gamble Creek, and redesign as necessary | 820 | DC-10 | Tidal Erosion, Wave Deposition, Fluvial Deposition | 0.003 | 0.000 | 2.000 | 1 | 1 | 2 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 30 | | Restore tidal processes, and lost salt marsh habitat at the mouth of Johnson Creek | 901 | DC-22 | Sediment Transport, Wave Erosion | 0.043 | 0.044 | 2.000 | 1 | 1 | 2 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 35 | Scenic Beach State
Park | Remove concrete foundations at base of bluff
north of unnamed stream at Scenic Beach State
Park and revegetate cleared riparian area with
native plants. | 938 | DC-27 | Sediment
Transport, Wave
Erosion | 0.026 | 0.055 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 36 | Spear-fir
Lagoon/Stavis Bay | Remove intertidal fill at mouth of small lagoon between Spear-fir Lagoon and Stavis Bay and restore sediment processes | 943 | | Tidal Erosion,
Wave
Deposition,
Fluvial
Deposition | 0.000 | 0.000 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 37 | Hood Point | Remove groins south of Hood Point | 954 | DC-29 | Wave Deposition | 0.085 | 0.123 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 40 | Boyce Creek South | Acquire property 1.5 miles south of Boyce Creek and remove riprap to allow sediment recruitment from adjacent bluff; remove home landward out of the intertidal zone. | 962 | DC-31 | Fluvial
Deposition,
Sediment
Transport, Wave
Erosion | | 0.112 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | Project
ID | Location | Description | | Drift
Cell ID | Dominant
Processes | CF Site
Score | DP Site
Score | Drift Cell
Score | CF Site
Rank | DP Site
Rank | Drift Cell
Rank | Management Action | Comment | |---------------|---|---|-------|------------------|--|------------------|------------------|---------------------|-----------------|-----------------|--------------------|---------------------------------|---| | 41 | Harding Creek | Remove the abandoned home near the mouth of Harding Creek. | 963 [| | Fluvial
Deposition,
Sediment
Transport, Wave
Erosion | | 0.039 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 46 | Chinom Point | Protect the remaining salt marsh habitat on Chinom Point. Approach the landowner regarding restoration of lost salt marsh habitat, natural intertidal function, and natural channel morphology of the small stream on the north side of the point. | 984 [| | Sediment
Transport, Wave
Erosion | | 0.000 | 1.333 | 1 | 1 | 1 | Protect, Conserve, Restore | Processes functional at site and landscape scale - high likelihood of restoration success; restoration will improve local conditions | | 7 | Point Julia | On Point Julia, remove the north boat ramp and associated bridge over a tidal channel; reduce total boat ramps to one; minimize the footprint of the road, parking lot, and fill; remove unused materials along the access road to encourage rever. | 809 C | OC-8 | Wave Deposition | | | | 2 | 1 | 1 | Conserve, Restore | Processes functional at landscape scale - high likelihood of restoration success | | 42 | Anderson Cove
Pilings | Remove old railroad grade and pilings from the head of Anderson Cove. Assess impacts to Holly Road. | | | Sediment
Transport, Wave
Erosion | 0.120 | 0.121 | 1.333 | 2 | 1 | 1 | Conserve, Restore | Processes functional at landscape scale - high likelihood of restoration success | | 43 | Anderson Cove | Eradicate invasive Japanese Knotweed from Anderson Cove. | 972 [| OC-33 | Sediment
Transport, Wave
Erosion | 0.120 | 0.121 | 1.333 | 2 | 1 | 1 | Conserve, Restore | Processes functional at landscape scale - high likelihood of restoration success | | 44 | Anderson Cove
North Shore | Remove the county road along the north shore of Anderson Cove (traffic could be rerouted to the road immediately to the north) and revegetate the riparian zone with native plants. | 972 [| OC-33 | Sediment
Transport, Wave
Erosion | 0.120 | 0.121 | 1.333 | 2 | 1 | 1 | Conserve, Restore | Processes functional at landscape scale - high likelihood of restoration success | | | Foulweather Bluff
Salt Marsh | Restore lost salt marsh and lagoon habitat at
the spit 0.5 miles south of the Foulweather Bluff
salt marsh. Restore sediment depositional
processes by removing bulkheads at this spit. | 787 [| OC-3 | Wave Deposition | 0.156 | 0.231 | 1.000 | 2 | 2 | 1 | Conserve, Restore, Restore Site | Processes functional at landscape scale - high likelihood of
restoration success; restoring site process may further
improve restoration success | | | Nick's Lagoon
Intertidal
Wetlands/ Salt | Restore intertidal wetlands and salt marsh at Nick's Lagoon by removing log structures and associated fill; remove derelict boats and other refuse. | 928 [| | Tidal Erosion,
Fluvial
Deposition | 0.174 | 0.246 | 1.000 | 2 | 2 | 1 | Conserve, Restore, Restore Site | Processes functional at landscape scale - high likelihood of restoration success; restoring site process may further improve restoration success | | 34 | Misery Point | | 935 [| | Wave
Deposition,
Sediment
Transport, Wave
Erosion | 0.154 | 0.232 | 1.333 | 2 | 2 | 1 | Conserve, Restore, Restore Site | Processes functional at landscape scale - high likelihood of
restoration success; restoring site process may further
improve restoration success | | | Bangor Naval
Station Stormwater
Impacts | Minimize impacts to the photic zone and the juvenile salmonid migratory corridor by over water structures on the Bangor Naval Station. | 869 E | OC-18 | Sediment
Transport, Wave
Erosion | | 0.124 | 1.000 | 3 | 1 | 1 | Restore, Enhance | Processes functional at landscape scale, but high site disturbance - moderate to high likelihood of restoration success | | 25 | Devil's Hole Creek | Remove road and fill to restore accretion spits and intertidal lagoon at Devil's Hole Creek | 872 [| | Sediment
Transport, Wave
Erosion | | 0.193 | 1.333 | 3 | 1 | 1 | Restore, Enhance | Processes functional at landscape scale, but high site disturbance - moderate to high likelihood of restoration success | | 26 | King's Spit Pilings | Remove old pilings north of King Spit. | 879 [| DC-20 | Sediment
Transport, Wave
Erosion | | 0.000 | 1.000 | 3 | 1 | 1 | Restore, Enhance | Processes functional at landscape scale, but high site disturbance - moderate to high likelihood of restoration success | | | Holly Salt Marsh
and Lagoon
Habitats | Restore historic salt marsh and lagoon habitats at the community of Holly. | 976 [| DC-34 | Fluvial
Deposition | 0.217 | 0.180 | 1.333 | 3 | 1 | 1 | Restore, Enhance | Processes functional at landscape scale, but high site disturbance - moderate to high likelihood of restoration success | | | King's Spit North | Investigate and reduce potential impacts from berm on north edge of King's Spit | 880 [| | Sediment
Transport, Wave
Erosion | | 0.304 | 1.000 | 3 | 2 | 1 | Restore, Enhance, Restore Site | Processes functional at landscape scale, but high site disturbance - moderate to high likelihood of restoration success; restoring site process may further improve restoration success | | | Kitsap Memorial
State Park | Remove creosote bulkhead to restore sediment recruitment and riparian processes along ~1000 ft of shoreline at Kitsap Memorial State Park | 850 E | | Sediment
Transport, Wave
Erosion | 0.266 | 0.174 | 2.000 | 3 | 1 | 2 | Restore, Enhance | Processes moderately functional at landscape scale and highly disturbed on the site - moderate likelihood of restoration success | | Project
ID | Location | Description | | Drift
Cell ID | Dominant
Processes | | DP Site | Drift Cel
Score | CF Site
Rank | | | Management Action | Comment | |---------------|-------------------------------------|--|------|------------------|--|-------|---------|--------------------|-----------------|---|---|-------------------------------|---| | 20 | Lofall | Remove the Lofall ferry terminal. | 850 | DC-15 | Sediment
Transport, Wave
Erosion | | 0.174 | 2.000 | 3 | 1 | 2 | Restore, Enhance | Processes moderately functional at landscape scale and highly disturbed on the site - moderate likelihood of restoration success | | 18 | Kinman Creek | Where possible, restore riparian vegetation at the mouth of Kinman Creek and improve tidal influence to the stream. | 848 | DC-15 | Sediment
Transport, Wave
Erosion | 0.133 | 0.193 | 2.000 | 2 | 1 | 2 | Conserve, Restore, Enhance | Processes moderately functional at landscape scale though
site processes seem intact - moderate likelihood of
restoration success; improving conditions off-site may
improve likelihood of restoration success | | 29 | Little Anderson
Creek Subestuary | Remove roads in the Little Anderson Creek
Subestuary | 899 | DC-22 | Wave Deposition | 0.116 | 0.185 | 2.000 | 2 | 1 | 2 | Conserve, Restore, Enhance | Processes moderately functional at landscape scale though
site processes seem intact - moderate likelihood of
restoration success; improving conditions off-site may
improve likelihood of restoration success | | 3 | Driftwood Key | Explore options to restore lost riparian, salt marsh, lagoon, and intertidal habitat at Driftwood Key (Coon Bay). | 795 | DC-4 | Tidal Erosion,
Wave Deposition | 0.104 | 0.323 | 2.000 | 2 | 2 | 2 | Conserve, Restore, Enhance, R | eProcesses moderately functional at landscape scale -
moderate likelihood of restoration success; restoring site
process may improve conditions at landscape | | | Little Anderson
Creek Salt Marsh | Restore lost salt marsh habitat 0.5 miles north of the Little Anderson Creek salt marsh. | | | Sediment
Transport, Wave
Erosion | | 0.424 | 1.667 | 2 | 3 | 2 | | eProcesses moderately functional at landscape scale-
moderate likelihood of restoration success; restoring site
process may improve conditions at landscape | | 13 | Gamble Bay | Remove old pilings, abandoned dock, and fill on the west shoreline about 1.3 miles north of the head of Gamble Bay. | 1825 | DC-12 | Fluvial Deposition, Sediment Transport, Wave Erosion | 0.025 | 0.038 | 3.000 | 1 | 1 | 3 | Enhance | Processes at landscape scale have been altered-likelihood of restoration success lower unless landscape processes restored; enhancement may be successful to improve some habitat features | | 14 | Port Gamble Bay | Remove old section of Hood Canal Bridge from
Port Gamble Bay | 827 | DC-12 | Sediment
Transport | 0.015 | 0.038 | 3.000 | 1 | 1 | 3 | Enhance | Processes at landscape scale have been altered - likelihood of restoration success lower unless landscape processes restored; enhancement may be successful to improve some habitat features | | 31 | Big Beef Creek
Subestuary | Restore natural tidal influence and sediment transport in the Big Beef Creek subestuary. | 909 | DC-23 | Tidal Erosion, Wave Deposition, Fluvial Deposition | 0.042 | 0.049 | 2.333 | 1 | 1 | 3 | Enhance | Processes at landscape scale have been altered - likelihood of restoration success lower unless landscape processes restored; enhancement may be successful to improve some habitat features | | 39 | Boyce Creek
Seawall Removal | Remove wooden seawall and restore natural channel geometry at mouth of unnamed/unnumbered stream about 0.5 miles south of Boyce Creek. | 961 | DC-30 | Fluvial Deposition, Sediment Transport, Wave Erosion | 0.042 | 0.139 | 2.667 | 1 | 1 | 3 | Enhance | Processes at landscape scale have been altered - likelihood of restoration success lower unless landscape processes restored; enhancement may be successful to improve some habitat features | | 4 | Hawks Hole Creek | Restore tidal influence, salt marsh, and spit
habitats at Hawks Hole Creek | 1805 | DC-6 | Tidal Erosion, Wave Deposition, Fluvial Deposition | 0.074 | 0.195 | 2.333 | 1 | 2 | 3 | Enhance, Restore Site Process | e:Processes at landscape scale have been altered- likelihood
of restoration success lower unless landscape processes
restored; enhancement may be successful to improve
some habitat features | | 21 | Cattail Creek | Restore salt marsh and lagoon habitat; restore fish passage at the mouth of Cattail Creek | 865 | DC-17 | Tidal Erosion, Wave Deposition, Fluvial Deposition, Sediment Transport, Wave | 0.138 | 0.000 | 2.333 | 2 | 1 | 3 | Enhance, Create | Processes at landscape scale have been altered- likelihood of restoration success lower unless landscape processes restored; enhancement or creation may be successful to improve some habitat features | | 22 | Floral Point | Manage Floral Point remediation/restoration site to limit containment but improve riparian and sediment processes | 866 | DC-17 | Wave Deposition | 0.267 | 0.092 | 2.333 | 3 | 1 | 3 | Enhance, Create | Processes at landscape scale have been altered - likelihood of restoration success lower unless landscape processes restored; enhancement or creation may be successful to improve some habitat features | | 38 | Boyce Creek Delta | Remove log retention structures in the tidal channels on the Boyce Creek delta and convert derelict beach house to an interpretive center or remove. | | DC-30 | Tidal Erosion ,
Wave
Deposition,
Fluvial
Deposition | 0.102 | 0.186 | 2.667 | 2 | 1 | 3 | Enhance, Create | Processes at landscape scale have been altered - likelihood of restoration success lower unless landscape processes restored; enhancement or creation may be successful to improve some habitat features | | Project
ID | Location | Description | Drift
Cell II | | CF Site
Score | | Drift Cell
Score | CF Site | | Drift Cell
Rank | Management Action | Comment | |---------------|--------------------------------------|--|------------------|--|------------------|-------|---------------------|---------|---|--------------------|-------------------------------|--| | 15 | Port Gamble Log
Mill | Remove intertidal fill, armoring, log storage debris, and pilings at the Port Gamble Log Mill to restore intertidal habitat | 829 DC-12 | Tidal Erosion,
Wave
Deposition,
Fluvial
Deposition,
Sediment
Transport, Wave | | 0.458 | 3.000 | 3 | 3 | 3 | Enhance, Create, Restore Site | P Processes at landscape scale have been altered - likelihood of restoration success lower unless landscape processes restored; restoring site process may improve conditions at landscape | | 16 | Port Gamble Point | Remove intertidal fill and armoring of jetty/breakwater to restore sediment processes at Port Gamble Point. Restore riparian zone. | 830 DC-12 | Ernsinn Tidal Erosion, Wave Deposition, Fluvial Deposition, Sediment Transport, Wave | | 0.569 | 3.000 | 3 | 3 | 3 | Enhance, Create, Restore Site | P Processes at landscape scale have been altered - likelihood of restoration success lower unless landscape processes restored; restoring site process may improve conditions at landscape | | 17 | Kitsap County Park | Remove east boat ramp at Kitsap County Park
on Salsbury Point, revegetate riparian zone with
native plants | 838 DC-13 | Sediment
Transport, Wave
Erosion | | 0.264 | 3.000 | 2 | 2 | 3 | Enhance, Create, Restore Site | P Processes at landscape scale have been altered-likelihood of restoration success lower unless landscape processes restored; restoring site process may improve conditions at landscape | | 24 | Bangor Naval
Station Restoration | Minimize stormwater impacts from impervious surfaces on Bangor Naval Station | 864 DC-17 | Fluvial
Deposition,
Sediment
Transport, Wave
Frosion | | 0.259 | 2.333 | 3 | 2 | 3 | Enhance, Create, Restore Site | Processes at landscape scale have been altered-likelihood of restoration success lower unless landscape processes restored; restoring site process may improve conditions at landscape | | 32 | Seabeck
Sediment/Tidal
Process | Remove road fill and structures on historic spit
feature at Seabeck to restore sediment and tidal
processes | 923 DC-24 | Wave Deposition | 0.180 | 0.462 | 2.333 | 2 | 3 | 3 | Enhance, Create, Restore Site | P Processes at landscape scale have been altered - likelihood of restoration success lower unless landscape processes restored; restoring site process may improve conditions at landscape | # **Application to Two Restoration Sites** Page 5 Two potential restoration projects were examined, one in Kitsap Memorial State Park and the other at Devil's Hole Creek (Table E-1; Figure E-1). Although we highly recommend direct site assessment of these recommendations, the Assessment scoring results suggest that the management actions described below would result in measureable improvement of habitat conditions. Table E-1. Matrix of recommended restoration strategies for two sample projects | Proposed Project | Recommended | Controlling Factors | Drift Cell Processes Scores | |--------------------|----------------------|----------------------------|---------------------------------| | Site | Restoration Strategy | Disturbance Score | | | Kitsap Memorial | Restore, Enhance | Overall CF Score: | Overall Drift Processes: Medium | | State Park | | High | Longshore Transport: High | | | | | Fluvial Deposition: Medium | | | | | Tidal Processes: Low | | Devil's Hole Creek | Conserve, Restore | Overall CF Score: | Overall Drift Processes: Low | | | | Medium | Longshore Transport:Low | | | | | Fluvial Deposition: Medium | | | | | Tidal Processes: Low | Figure E-1. Potential Restoration Sites in Kitsap County: Kitsap Memorial State Park (top) and Devil's Hole Creek (bottom). While Devil's Hole Creek sits in a relatively unaltered landscape, Kitsap State Park Page 6 does not. Therefore, the types of restoration activities that may be met with success in Devil's Hole differ from those in Kitsap. # Kitsap Memorial State Park The proposed restoration project at Kitsap Memorial State park would remove creosote bulkhead, with the objective of restoring sediment recruitment and riparian processes along 1000 ft of shoreline. The site itself is located within a drift cell with moderately disturbed processes and within a highly disturbed site. At such sites, restoration and enhancement of processes would likely have the greatest success because the natural habitat forming processes would support long term maintenance of the habitats at this site and perhaps adjacent sites. The proposed project to remove croosote bulkhead on this sediment transport beach would be a direct activity impacting the site. However, for the removal of the bulkhead to have a positive and maintaining impact, it would be wise to examine the other disturbances within the highly disturbed drift cell to assure maintenance of processes. ### Devil's Hole Park The proposed project in Devil's Hole Creek would remove road and fill to restore accretion spits and intertidal lagoon. The project would take place in an area that has relatively low disturbance to the landscape processes with the exception of fluvial processes, and a moderately impacted site controlling factors score (Table E-1). The proposed restoration activity to remove a road to enhance the fluvial processes and would likely enhance the habitat forming processes here . Additionally, the action would improve the sediment delivery in the entire drift cell.